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For operators between Banach spaces, we study certain s-covering numbers,
which arc a kind of combination between s-numbers and entropy numbers. We
prove inequalities between s-covering numbers and various s-numbers. As an
application, minoration thcorems involving the ¢-norm and :-norm are given.
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1. INTRODUCTION

In this paper we establish inequalities involving s-numbers and so-called
s-covering numbers of operators between Banach spaces. One of the main
results, which is proved in Section 3 (Theorem 3.4), is the following weak
type inequality, in which the a-covering numbers of operators are
dominated by the approximation numbers

sup (I+n—1)"7a, (T)<C(p) sup (U+n—1)"a,, , (T), (1.1)

lsnsm isnsm

for 0< p<oo, 1 <I,m<oc. Various inequalities of weak type, used to

majorize other s-covering numbers by s-numbers, can be verified with the

help of this inequality. In order to prove (1.1) we refer to a striking result

of Pisier [P1, P2] concerning the existence of isomorphisms from arbitrary

n-dimensional Banach spaces into the n-dimensional Hilbert space such
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122 CARL AND HESS

that certain s-numbers of these isomorphisms can be appropriately
majorized.

A number of useful applications of (1.1) are given in Section 4. We
derive so-called minoration theorems for Gaussian averages (/-norms) and
Rademacher averages (r-norms) of operators from /, into Banach spaces.
The results generalize the classical minoration theorem of Sudakov for the
/-norm, which plays an important role in the theory of stochastic
processes. The estimates can be considered as a kind of interpolation or
combination between Sudakov’s minoration theorem and a minoration
theorem of the /-norm, which originates in the paper of V. Milman [M1]
and which was improved by A. Pajor and N. Tomczak-Jaegermann [PaT].

Throughout this paper we use standard definitions and notations of
Banach space theory. For the sake of convenience we recall some of them.
Throughout this paper E, F, and G denote (real or complex) Banach
spaces. Given a Banach space £ we denote its closed unit ball by U, and
its dual space by E'. Moreover L(E, F) denotes the Banach space of all
(bounded linear) operators from E into F equipped with the usual operator
norm.

In order to describe the covering concept let us recall the definition of
the dyadic entropy numbers e,(7). The nth dyadic entropy number
e (T),n=1, of an operator Te L(E, F) is defined to be the infimum of all
&> 0 such that there exist y,, ..., y,.-1 € F for which

on 1
T s | {y+eUr}

i=1

holds. For the definition of s-numbers we refer to [Pi] or [CS].

2. 5-COVERING NUMBERS

According to the concepts of s-numbers and dyadic entropy numbers
we define an s-covering number function. Let L denote the class of all
(bounded linear) operators, N the set of natural numbers, and s: L — £ (N)
any s-number function. An s-covering number function is a map

s=(spu): L~ (NxN)

which associates with every operator T its s-covering numbers s, ,(7) and
satisfies the following properties:

(SC 1) Combination Property.
s, (T)=eT), s, {T)=sT) for TeL(E F)and 1<n<cc.
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(SC ii) Monotonicity.
|| T” = sl‘l(T) > sm,/(T) > Sn,k(T) 2 0
for Tel(E,Fyandnzmzland k>j>1.
(SCiiii) Additivity.
Smtn 1.j+k— I(S+ T) ssm,](s) +Sn,k(T)
for S, TeL(E,F)and 1<, k,m n<w.
(SCiv) Ideal Property.

Sui(RST)<||R| 5, (S) IIT])
for ReL(G,H),SeL(F,G), TeL(E, F),and 1<k, n<c.

Moreover, some s-covering number functions satisfy an additional property
called

(SC v) C-Multiplicativity. There exists a constant C > 1 such that

Sm+n—l.j*k—I(ST)SC'Sm,j(S)Sn.k(T)
for SeL(F,G), TeL(E,F), and 1</, k,m, n< .

If C=1, then the s-covering number function is said to be multiplicative.
This concept was introduced in [CM] in a slightly modified version.

The basic examples are the

a-Covering numbers.

a,(T)=inf{e,(T— A):rank(4) <k}. (2.1)

This means that for Te L(E, F), a, ,(T) is the infimum of all p >0 such
that there exists an operator 4 e L(E, F) with rank(4)<k and elements
y,eF, 1<i<2"! for which

n -1

(T-A)NUy) <= U {yr+PUF}-

i=1

(¥}

Analogously:

c-Covering numbers.

Coi(T)=inf{e,(T1%): M < E, codim(M) < k}. (2.2)
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d-Covering numbers.
d,(T)=inf{e (Q5T): NS F, dim(N)<k}. (2.3)
t-Covering numbers.

’ILk(T)zan.k(lrt TQl)a (24)

where Q,:/,(U,)—E and [, .: F—> ¢ (U, ) are the canonical surjection
and injection, respectively. (For the 7-covering numbers we have a weaker
form of the combination property, namely

% 6’,,( T) S In. l( T) g 6’"( T))

These s-covering number functions were already considered in [CM]
together with the so-called

e-Covering numbers.

e, «(T) = inf{¢ > 0: there exist subspaces M, < F,
dim(M,) <k, and y,e F, 1 <i<2" ', such that T(Ug)<

2y MUY (2.5)
Note that the combination property (SCi) coincides for the e- and
d-covering numbers since e, (I')=e¢,(7T) and e, (T)=d,(7T). The dif-
ference between (2.3) and (2.5) becomes clear if we rewrite (2.3) into

d, (T) = inf{e > 0: there exists a subspace M < F,
dim(IM)<k, and y,eF, 1<i<2" ', such that T(Uy)<
Uit i+ M +eUgL,

which means that in the definition of d,, the coverings consist of
“cylinders” {y,+ M;+¢eU,} with one common “direction” M while the
directions may be different in (2.5). From this we obviously obtain

en.k( T) < dn.k( T)

3. INEQUALITIES BETWEEN s-COVERING NUMBERS AND $-NUMBERS

This section deals with basic estimates between s-covering numbers and
s-numbers.

LEMMA 3.1. Let Ae L(E, F) be an operator of finite rank, rank(A)=r,
acting between real Banach spaces E and F. Furthermore, let N= N(A) and
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R=R(A) be the null space and range of A, respectively. For arbitrary
isomorphisms

X:E/N -/ and Y:R- /]
we have

ay 2(A)<Te(X) e (Y ') sup [2 nke

I<shks M

k 1k k Vk
x{ﬂ Cf(Y)di(X'l)} {Z s 1(/4)} jl, (3.1)

i=1 i=1

for 1 <1, n< o with

M=max{1,[l+r—§_—l]}, (32)

where [x] denotes the integer part of x.

Proof. Without loss of generality we may assume that
r=rank(4)>1, (3.3)

since a,, ., ,(4)<a,,(4)=a,(A)=0 in the contrary case. We factorize 4
canonically through the quotient map @Q: E— E/N and the imbedding
IL:R-F,

A=154,0, (3.4)
and use the isomorphisms X: E/N — £} to introduce S:¢% — £} by
S=YA,X '  or, equivalently, A,=Y 'SX. (3.5)

Next we estimate the a-covering numbers of S. According to the Schmidt
representation formula there exist isometries U, V: ¢’ — 7 and a diagonal
operator D with positive entries such that

S=Upv ' and D=U 'SV. (3.6)

If the diagonal elements o, of D are ordered in a non-increasing sequence
we then can express o, by

0:=a;(S)=c(S)=d(S)=1,(5), I1<igr (3.7)
The ideal property (SC iv) and (3.6) imply that

a,,(S)=a, D), I<lin<oo. (3.8)
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An estimate for the a,,(D) can be obtained as follows. Consider D,:
£y-£8 D¢y é)=(0, 8 na (& ,0,..,0). According to the
definition of a,, and a result of Gordon, 1°onig, and Schutt (c¢f. [CS,
GKS]) we obtamn

Lsk<sr -1+1

k 1k
a,,(D)<e(D—D)<6 sup 2-\-1*k {ﬂ 0/+i—l} . (39)
i=1
It follows from (3.7) and (3.8) that

k 1:k
a,,/(8)<6 sup 2" ”""{I] Iy 1(5)} : (3.10)
f:: 1

Ishkgr—i+1

Note that the range of k is not empty because of {3.3).

In order to replace the operator S by 4 we use (3.5) and the multi-
plicativity, injectivity, and surjectivity of the symmetrized approximation
numbers ¢,. The multiplicativity of the ¢, allows us to write

Liyivk --2(RST)<C;‘(R)1,(S) d.(T)
(cf. [CS]). Hence we obtain from (3.5)
Lesios(S) eV e (A)d (X N =c/(Y) 1. (A)di(X™"). (3.11)

Now we insert (3.11) into (3.10). For this purpose let

/ 1y
71={ﬂ ’/+1-1(S)}

i=1

be the non-increasing sequence of geometric means of ,(5), ¢,, (S), ...
Then

2 =Dy 27 Wy <o oD (S)  for j=4,5,6;

k 17k
—(n— Y —n -1y
2 {n “‘U}'j<2 (n )(3/(1‘3).,,:“( <2 (n -1)(3k +3) {H II+31 J(S)}

i=1
for j=3k+1,3k+2 3k+3.
Furthermore
2“""“"77,<2' fn =11 (8) for j=1,2,3.

Hence (3.10) becomes
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k 1k
a,,(S)<6 sup 2 ("_”"’(Skﬂ'{n ’/+31—3(S)}

I<k<x i-1

1:k

k ;
<7 sup 2'"'““”’{111,”,- 3(3)} , (3.12)
i1

Igshk<x

where non-zero terms occur only for /4 3k —3<r, 1e, 1 <k <M, cf (32).
From (3.11) and (3.12) we obtain

k 1k k 1k
a,,(S)<7 sup 2‘"”"”’{“ c,(Yydi(Xx ')} {H 0 1(A)} :
Ishks M i=1 i—-1

The multiplicativity (SC v) and (3.4), (3.5) imply that
as, 12, (A)<as, 2 ,(Ag)<e, (Y l)an./(S)en(X);
therefore

ay, 2(A)<Te (X)e (Y " sup l:z--n,-um-.n

Ik M

k 1k k 1k
x{ncmd,.(x-*)} {nz,., .(A)} ] I

i=1 [
Remark 3.1. U E and F are complex Banach spaces we must replace
2 n/(3k + 3) by 2 n/(6k + 6) in (3])

From this lemma we derive some conclusions. Let us first recall the
definition of local injective, resp. surjective distances, based on the
Banach-Mazur distance d(E, F) of Banach spaces E, F:

dE, F)={inf{ '|T:.| 1T ' for all isomc?rphisms Te L(E,F)}
< if E and F are not isomorphic.
The nth local injective distance 6,(E) is given as
0.(E)=sup{d(M, ¢}y McE m=dim(M)<n},
and the nth local surjective distance 3'"(E) as

SUIE)y=sup{d(E/M, (3): M < E, m=codim(M)<n}.

COROLLARY 3.1. Under the assumptions of Lemma 3.1 the following
inequality holds

k 1k
a, (A)< T8V (E)8,(F) sup 2""’“’**"’{ﬂz,+, AA)} . (313)

IsksM i=1



128 CARL AND HESS

Proof. Given £¢>0 we choose X and Y in Lemma 3.1 with
WXUUX U< (1 +e) d(EIN, £5) < (1 +¢) 8YUE)
IYINY ‘I <(l+e)d(R, 75)< (1 +¢),(F).

All terms in (3.1) containing X or Y are estimated by the operator norms.
Hence for 3m — 2 <n<3m we have

an (AY< a3y 5, (A)KT(1+2)? 6"(E) O (F)

P 1k
X sup 2_””"‘3’('3){” [ S I(A)} .

Il<sks M i—1
Since m = n/3 the proof is complete.

Now an important result of Pisier [P1, P2] is used to obtain further
consequences of Lemma 3.1,

THEOREM 3.1. (Pisier). For each o> ; there is a constant C(«) such that
for any n-dimensional (real or complex) Banach space E there is an
isomorphism X from E onto £ (real or complex, respectively), such that

dk(X)<C(a)(g> and dk(x-')saa)(z) (3.14)
for all k,1<k<n. (For k>n we have d (X)=c, (X" ')=0 in any case.)

Moreover, the constant C(a), only depending on a, can be chosen of order
O(x—3)""'forxli |

The corresponding result concerning the dyadic entropy numbers of X
follows immediately from Theorem 3.1 and the following inequality from
[C] (cf. [CS, P2].

THEOREM 3.2.  For each p, p >0, there is a constant ¢, such that for all
operators T we have

sup k'7e (T)<c, sup k'71(T), 1<n<x, (3.15)

Il<k=n Isk<n
and c, remains bounded if p varies in a compact supset of (0, ).
If we note that t,(X)=d. (I, X)<d.(X) and analogously (X ')=
X '0,)<c (X 1) we obtain from (3.14) and (3.15), by setting p =1/,

2 Sup k*t(T)<c,, sup k“C(a)(5>

Igk<gn l<sk<n k

ke (T)< ¢,

=C|."ZC(a)nza l Sks".
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Hence we may state the following corollary.

COROLLARY 3.2. Let X: E— /% be the isomorphism from Theorem 3.1.
Then

max{e(X), e,(X ")} <, ,Cla) <;\—1> forall k,1<k<o, {3.16)

where C(2) and ¢, , are the constants of (3.14) and (3.15). Moreover, for a
modified C(x), which is also of order O(x—13) ' for a| L, we have

max{e(X), e (X "), di(X), ci( X1} < Cla) (;—Z) for 1<k<x.

(3.17)

These considerations lead to a more sophisticated corollary of
Lemma 3.1.

COROLLARY 3.3. For any B, B> 1, there exists a constant C([5) of order
C(B)=0(B—1)? for B such that for any operator A€ L(E, F) with
rank(A)=r between real Banach spaces E and F

r 28 ok +.9) n B k 1k
T —n(9k +
a,,.,u)saﬁ)(n) sup 2 (—9k+9> {H e, «A)} ,
(3.18)

Jor all Ln, 1 <1, n<oc, M being given by (3.2).
Proof. Put a=pf/2> 4. Then by 3.17 there are X and Y such that

max{e(X), e,(Y '), co(Y), d(X 1)} < C(2) (%)2 1<k<on.  (3.19)

We know that C(a)=0(x—3) "*=0(f—-1) '? for Bl1. Hence it
follows from (3.1) that

% r\B (K 1k
(13" 2‘/(A)S7(’2C4(-1)(—> Sup 2 n-’(3k+3)<;> {I—[ I/+i—l(A)} 1
n

sk M i=1

where k!> (kje)* is used. Estimating

1 B n f#
- B
(k) s18 <9k+9)

and passing from a3, ,,(A4)to a, ,(A4) as in the proof of Corollary 3.1, we
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finally obtain the inequality (3.18) with the constant C(B)=T7¢18°C*(x)
which is indeed of order O(f—1)"2for 1. |

Remark 3.2. If the Banach spaces X and Y are complex Banach spaces
then 2= in (3.13) and (3.18) must be replaced by 2~ "(!8¢+18)

Now let us remove the restriction on A4 being a finite rank operator.

PROPOSITION 3.1. Let f>1 and Te L(E, F) be an operator between real
Banach spaces. Then

28
a:x,/(T)<a3m+/(T)+D(ﬂ) <’11—n-+—1) sup [2' ni(9% +9)

Ig<k€m

n \P(k Lk
X<9k+9> {ﬂ i 1(T)} ] (3.20)

i=1

for 1 <[, m,n< oo with a constant D( ), depending only on B and being of
order O(f—1)"% for B 1.

Proof. Given ¢>0 we determine an operator A€ L(E, F) with
r=rank{4)< 3m+ 1 such that
T — Ajl <(l+¢)as, , (T) (3.21)
From
an.l(T) < ”T—A” +(1,,‘/(A)
(cf. (SC iii) and by applying (3.18) to A4 and using r<3(m+/) and M=
max{1, [1+ (r—/)/3]} <m we obtain
B

N2 .
a, (T)<(l +s)a3,,,+,(T)+9”C(ﬂ) (m'+' ) sup [2 k)
n

Ilsk<sm

n f k 15
x<9k+9) {n s ,(A)} ] (3.22)

i=1

In order to eliminate ¢,,,_,(A4) we derive from (3.21)

Ly i A)SHA=TH + 1, - (T)<(1 +8) asp o (T) 4+, (T)

<Q2+e)a,,,_(T) for 1<ig<m.
Hence, since for |1
D(B)=2-9°C(By=0(f—1)?
(3.22) implies the desired estimate (3.20). |
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The next inequality relates a, ,(7) to the £/, , -norm of a finite sub-
sequence of the approximation number sequence.

ProrosITION 3.2. Let O<p<oc and TeL(E,F) (E, F real Banach
spaces). Then

nN? +1
a"_/(T)<(11+,,,_ 1(T)+C(P) (m_:-_) logZ <mT+2>

xn '? sup k'Pa,,, (T), (3.23)

Ilgsksm
Sforall,m, n, 1 <I,m, n<coc, where C(p) is a constant depending only on p.
Proof. Because of k!> (k/e)* we have

k 1k
{n 01+1—1(T)}

i—1

< (kY™ sup jlf‘pam;’ (T)

I1</<4%

Lip
<<E) sup k'%a,_,_((T) for 1<k<m. (324

k lsksm

We now insert (3.24) into (3.20) and choose an appropriate f> 1. Note
that for the first summand on the right-hand side of (3.20)

aim (T)Z a3 (T).

For the second summand we apply (3.24) and get from (3.20)

2, (T)< @, (T)+e"? D(B) (mTH)z” { sup k'a,, ()}
) , Ilsksm
x{lzggmz—"r“"k*”(m) k“’f’}. (3.25)
Estimating £ # by
) ) Lip
k-YPg 18Pyt <9k +9>

and setting x =n/(9% +9), we may rewrite (3.25) as

28
a4, (T)<ay, 1(T)+(18e)"’”D(lf)(m:[) pe

x{ sup k'Pa,,, (T)}{ sup 2*xF*'7Pl (3.26)

Il<sksm O<v<
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With the function a(1) :=supg., - 2 “x'=(t/e-In2)" and the constant
C(B, p):=(18e)'? D(B) a(B + 1/p) we get from (3.26)

My 2
an,I(T)Sal—m I(T)+C(B’p)<r—n—nil> <m+l> n Lr

n

x{ sup k'a,, . (T)}. (3.27)

1<k<m

Fixing p, we see from the definition of C(f, p) that C(f, p)=0(f—1)"~

for B 1. If we set
1
/3=1+[10g (”’n—”+2>] (3.28)

then 1 < <3 for all /, m, n =1 and thus there is a constant C(p) such that
C(B, p)<C(p)p—1) 2 for 1<B<3.

With § given in (3.28) it is easy to verify that

X8 4 2
C(B, p)<"’+"> { <eC(p )[log <'"T+'+2>]

n

Together with (3.27) this completes the proof. |l

Remark 3.3. In case of complex Banach spaces the value 2 "%+?

must be replaced by 2 -7 "#+® in (3.20), whereas (3.23) holds in the real
and complex cases (clearly C(p) must be modified).

The next theorems deal with inequalities related to Theorem 3.2.
THEOREM 3.3. Let O<p<oc and Te L(E, F), where E and F can be

either real or complex Banach spaces. Then there exists a constant C(p),
only depending on p, such that

sup n'*a, (T)<C(p) sup n'fa;,, (T) (3.29)

l<nsm l<ngm

for all L m, | <I<m< 0.

THEOREM 3.4. Let O<p<oc and TeL(E,F). Then there exists a
constant C(p) such that

sup (I+n—1)"a, (T)<C(p) sup (I+n—1)"a,,, (T) (330)

l€<nm l<sn<m

forall l,m, 1 <l,m< x.
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Proofs. (Theorem 3.3) Suppose that » is given such that 1 <n<m. We
apply (3.23) (if E and F are complex Banach spaces cf. Remark 3.3) for
l,m,n with m=n

nl"pan./(T) < nlr.pal-fn I(T)

+4log’4.-C(p) sup k'7a,., (T)

lsk<sn
For C(p)=1+4log?4-C(p) we obtain

nly‘l’a"J(T)gc‘(p) sup klpa/+k—l(T)

l<ksn

S6‘(10) Sup nl-[?a/+" I(T)$

l<snsm

that is, (3.29).

(Theorem 3.4) According to (3.29) we have for 1 <m

sup ({+n—1)"a, (T)

lsnsm

< sup (2n)'7a, (T)<2Y"C(p) sup n'?a;,,_\(T)

lgsngsm I1<nsm

<2Y7C(p) sup (I+n—1)'""a;,, (T) (3.31)

l<nsm
Without any restrictions on / and m, we have

sup (I+n—1)""a, (T)

l<n<!

<@ a, (T)=020)'"a(T)<2'" sup (I+n—1)"a,,, (T).

Il<ngm

(3.32)

Combining (3.31) and (3.32) we obtain (3.30). More precisely, for / <m we
use (3.31) and (3.32), and for /> m we start from

sup (I+n—=1)'"7a, (TY< sup ([+n—1)"*"a, (T)

l<nsm lsn<!

and apply (3.32). |}

The preceding two theorems are also valid for other s-covering numbers.
We only mention the following result which corresponds to Theorem 3.4.
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THEOREM 3.5. Let O<p<oc and TeL(E, F). Then there exists u
constant C(p) such that

sup (l+n~1)""a, (T)<C(p) sup (I+n-1)"a,,, (T) (3.33)

I1<ngm lsnsm

fors=c,d t (¢f 22)-(24)) and all ,m, 1 <], m< .

Proof. For s=1t the desired estimate is an obvious consequence of
Theorem 3.4 and the definition of t. For the other cases s=c, d recall the
definition of Gelfand and Kolmogorov numbers based on the approxima-
tion numbers

eT)y=a,l,.T),
dn( T) = an( TQI )3

where Q, and I are the canonical surjection and injection, respectively
(cf. [CS]). In order to prove (3.33) for s =c, d we show that

cni(TY<2a,,(1,.T) (3.34)
d, (T)<a, (TQ)). (3.35)

These inequalities are consequences of

Cn,l(S)san,l(S) (336)
dn,l(S)San,l(S) (337)
for any operator S. Since (3.37) is already proved in [CM] we only give
the argument for the proof of (3.36). Let 4 be an operator with rank(4) </
such that
en(S_A)San./(S)+£=p'

Hence

an--1

(S—A)Ug) < U {.Vi+PUF}

il

for y,eF,1<i<2" ' For M= N(A), the null space of 4, we have
codim(AM) </ and

(ST5 U yi+pUr},

hence
Cll,[(S) g en(SII;I) < (l,,_[(S) + &
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Because of the surjectivity (resp. injectivity) up to a factor 2 of the dyadic
entropy numbers we have

Cn.I(T) s zcn,l(lx T) $ 2'an‘/(l,v, T)
dn./(T) S dn,l(TQl ) S an.I(TQI)'

These incqualities complete the proof of (3.33) for s=¢,d. |

4. INEQUALITIES BETWEEN s-COVERING NUMBERS,
GAUSSIAN AVERAGES, AND RADEMACHER AVERAGES

This section is devoted to the investigation of inequalities between
d-covering numbers of operators from a Hilbert space into a Banach space
on one side and Gaussian or Rademacher averages on the other side. These
inequalities complement and generalize V. Milman’s discovering that the
Gaussian average or the /-norm is an appropriate parameter for estimating
Gelfand and Kolmogorov numbers [M1, M2].

For this purpose recall the definition of the so-called Gaussian average
or /-norm of an operator T from / into an arbitrary Banach space E. The
¢-norm £(T) of T is defined as

1:2
/(T)= <[ 1T dmx)) , (4.1)

where 7, denotes the canonical (normalized) Gaussian measure on the
euclidean space R". Moreover, for any operator T from /7, into E we define
/(T) as

((T)=sup{/(TX): XeL({3, /5) for some n, | Xi| <1} (4.2)
We use a minoration of /(T) which originated in the paper of

Milman [M1] and was improved by A. Pajor and N. Tomczak-
Jaegermann [PaT] (cf. [G, P2]) in the following theorem.

THEOREM 4.1. Let E be a Banach space and let TeL({,, E) be a
compact operator. Then
sup k' d(T)<C-/A(T), (4.3)

1l sk <ec
where C = 1 is a universal constant.

Remark 4.1. Note that there is a dual version (4.3) for compact
operators Te L(E, £,), namely

sup kY (T)<C-A(T'), (4.4)

1=k <>

640765 2.2
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which is based upon ¢, (T)=d,(T’) for all operators T. But (4.3) is also a
consequence of (4.4) because of d,(T)=c,(T’) for compact operators and
AT)y=¢((T"), for TeL(/,, E).

Combining (4.3) with Theorem 3.5 for s=d we may state the following

minoration theorem of the Gaussian average (/-norm) by d-covering
numbers.

THEOREM 4.2. Let E be a Banach space and let Te L{(f,, E) be a
compact operator. Then

sup (I+n—1)'rd, (T)<C-#(T), (4.5)

lgsin< «

where C 21 is a universal constant.

The inequality (4.5) includes the classical Sudakov minoration theorem
[Su] for /=1 and the inequality (4.3) for n= 1. The version corresponding
to (4.4) is the minoration of /(T’), Te L(E, £,) by c-covering numbers:

sup ([+n—1)"*?¢, (T)<C-£(T). (4.6)

I1<in<

Next we want to derive similar inequalities for Rademacher averages
instead of Gaussian averages. For this purpose let & ={f}, .., f,,} be an
orthonormal basis of /5 and Te L(/%, E) be an operator. The Rademacher
average or r-norm of T with respect to @ is given by

&= *1

m | 2 1.2
z,,,(T):(Average i| Y &T(f)! > .

P

It is well-known that 24(T) < c-#(T) for some universal constant ¢, inde-
pendent of the special choice of @. The following minoration theorem for
the Rademacher averages was proved in [CP].

THEOREM 4.3. Let E be a Banach space and let Te L({5, E) be an
operator of rank n. Then

- 12
sup <log (1 + g)) K'2d(T)< C14(T) (4.7)
lghk<n

for any orthonormal basis @ in ¢%. The constant C is a universal constant.

Combining Theorem 3.5 with Theorem 4.3, we obtain thc Rademacher
version of Thecorem 4.2.
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THEOREM 4.4. Let E he a Banach space and let Te L(/7, E) be an
operator of rank n. Then

-1.2
sup (log(1+ 70— ])  UHm AN CouT) 48)

Vskl< s
for a universal constant C and any orthonormal basis @ in /'y,
Proof. Let k= 1. From (3.33) we get
(I+k—=1)d, (T)
<C(t) sup (I+j=-1)d,., (T)

Ik
*- i

. . . a2 " H
<C(1) sup (I+j-1) (log<l+k+~j_l>)

l<j=sk

. S gy12 n |3d r
x‘zli[(:k(l+,/ 1) <log<l+[+j_l>> e, (T,

The first supremum on the right-hand side equals

1.2
L1y )2 "
(I+k-1) <10g<1+1+k—1>>

since x — x-log(1 +n/x) is an increasing function. The second supremum
can be estimated by C.2,(7T) according to (4.7). Hence

12
(I+k— 1) (log(l + )) d (T)SC C(1)-1o(T).

I+k—1
There are dual versions of (4.7) and (4.8) for operators Te L(E, /), of
rank n, namely

12
sup (log <1 +;>> k' e (TYKS C e plT) (4.9)

Isk<n

and

12
sup <1og<1+k+'l'_]>> k+1—1)2¢, (T)KC1o(T").  (4.10)

I Slk=< x

The last inequality can be interpretated as follows:

Let Bc R" be a compact, convex, and symmetric sct with non-empty
interior. Equipped with the Minkowski functional |, -|| ; of B the vector space
R” becomes a normed vector space which is isomorphic to /4 and admitting
B as its unit ball. Let us apply (4.10) to the canonical isomorphism

T: (Rn. |i'”[g)"‘)(R"- || 2)=/,2,
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CoROLLARY 4.1. For 0 < p < oc there exists a constant C,, only
depending on p, and for each pair (k,l), | <k < ¢, 1 <[<n, there exists an
I-dimensional subspace M < R" such that

n Yy Lip
Z Eiti }
i=1

x<log(l +—n—>>“2 (n+k=1) "2 (411)
n+k—1 ’ ’

Therefore M N B is covered by 2“~" euclidean balls of radius p, where p is
bounded by the right-hand side of (4.11). In particular, for each I, 1 <I<n,
there is an I-dimensional subspace M = R" such that

n
Z &;l;

i=1

ee(MnB)<C,- {Averagc sup

&= +1 t={f],...l14)€B

ry Lp
e(Mn B)<Cp~{Average sup } n7'2 (4.12)

&= +I t=(t.... ta)e B

For operators Te L(£}, £,) we have the following modification of (4.9),
which was proved in [CP].

THEOREM 4.5. There exists a universal constant C such that

—-1,2
sup (log (1 + g) k2 (T)<C|TI (4.13)

1€kgn

for all TeL((,7/,) and all ne N.

As in Theorem 4.4, we derive from (4.13) and Theorem 3.5

n -2 y
— e, < 4.1
1<Skl,lzzx~<log<l+k+/—l>) (k+1=1)7c, (T)SC|TI (4.14)

for Te L(¢7, ¢,).
If we take the volume ratio inequality

vol,,(4) 7" . ,
—2—=| < inf k'"e(4
[VOI,,,(U,'Z-):I t sllfl< . sk( )

into consideration and denote the absolutely convex hull of the points

n

Xys . X, €704, e, the set

{Z AiX g z M."Sl},
i=1

i=1

by aconv(x,, .., x,), then we can derive the following corollary from (4.14).
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CoroLLARY 4.2. Let  xy,..,x,efy be given, such that B=
aconv(x,, .., x,) has a non-empty interior. For each m, 1 <m<n, there
exists an m-dimensional subspace M < /7 with

vol,(M n B) '™ ( ( n ))“'2
—_— <C-|1 1+ —
l: vol,,,(U,?) ] o8 +n—m+1

"2 max x|,

I1<ign

x(n—m+1)

where C is a universal constant.

REFERENCES

[C] B. CarL, Entropy numbers, s-numbers, and eigenvalue problems, J. Funct. Anal. 41
(1981), 290-306.

[CP] B. CaRL AND A. PaJOR, Gelfand numbers of operators with values in a Hilbert space,
Invent. Math. 94 (1988), 479-504.

[CM] B. CarL anND E. Makal, Jr., New covering numbers and spectral properties of
operators in Banach spaces, Preprint No. 39, Math. Inst. Hungarian Acad. Sciences,
1988.

[CS] B. Carr anp ]. StapHan, “Entropy, Compactness and the Approximation of
Operators,” Cambridge Univ. Press, London/New York, 1990.

[G] Y. GorDON, On Milman’s inequality and random subspaces which escape through
a mesh in R" in “GAFA Israel Funct. Analysis Seminar (1986,/1987),” Springer
Lecture Notes 1317, pp. 84-106, Springer-Verlag, Berlin/New York, 1988.

[{GKS] Y. Gorpon, H. KONIG, aAND C. ScHUTT, Geometric and probabilistic estimates for
entropy and approximation numbers of operators, J. Approx. Theory 49 (1987),
219-239,

[(M1] V. MiLmMaN, Random subspaces of proportional dimension of finite dimensional
normed spaces, approach through the isoperimetric inequality, in “Séminaire
d’Analyse Fonction (1984/1985),” Université Paris VI, Paris.

[M2] V. MumaN, Volume approach and iteration procedures in local theory of normed
spaces, in “Proceedings, Missouri Conf. 1984,” Springer Lecture Notes 1166,
pp. 99-105, Springer-Verlag, Berlin/New York, 1985.

[PaT] A. Pajor AND N. TOMCZAK-JAEGERMANN, Subspaces of small co-dimension of finite
dimensional Banach spaces, Proc. Amer. Math. Soc. 97 (1986), 637-642.

[P1] G. PisiEr, A new approach to several resuits of V. Milman, J. Reine Angew. Math.
393 (1989), 115-131.

[(P2] G. Pisier, “Volume Inequalities in the Geometry of Banach Spaces,” Cambridge
Univ. Press, London/New York, 1989.

[Pi] A. PIETSCH, “Operator Ideals,” AdW, Berlin, 1978.

[Su] V. N. Subakov, Gaussian processes and measures of solid angles in Hilbert space,
Souviet Math. Dokl. 12 (1971), 412--415.



