Estimates of Covering Numbers

B. CARL
Fachbereich Mathematik, Universitäl Oldenburg, D-2900 Oldenburg, Germany:

AND

A. Hess
Sektion Mathematik, Friedrich Schiller U'niversität Jena, Universitätshochhaus 17. OG, D-6900 Jena. German!:
Communicated by Ored Shisha

Received May 8, 1989; revised July 20, 1990

Abstract

For operators between Banach spaces, we study certain s-covering numbers, which are a kind of combination between s-numbers and entropy numbers. We prove inequalities between s-covering numbers and various s-numbers. As an application, minoration theorems involving the ℓ-norm and r-norm are given. © 1991 Academic Press. Inc.

1. Introduction

In this paper we establish inequalities involving s-numbers and so-called s-covering numbers of operators between Banach spaces. One of the main results, which is proved in Section 3 (Theorem 3.4), is the following weak type inequality, in which the a-covering numbers of operators are dominated by the approximation numbers

$$
\begin{equation*}
\sup _{1 \leqslant n \leqslant m}(l+n-1)^{1 ; p} a_{n, l}(T) \leqslant C(p) \sup _{1 \leqslant n \leqslant m}(l+n-1)^{1 ; p} a_{l+n}(T), \tag{1.1}
\end{equation*}
$$

for $0<p<\infty, 1 \leqslant l, m<\infty$. Various inequalities of weak type, used to majorize other s-covering numbers by s-numbers, can be verified with the help of this inequality. In order to prove (1.1) we refer to a striking result of Pisier [P1, P2] concerning the existence of isomorphisms from arbitrary n-dimensional Banach spaces into the n-dimensional Hilbert space such
that certain s-numbers of these isomorphisms can be appropriately majorized.

A number of useful applications of (1.1) are given in Section 4. We derive so-called minoration theorems for Gaussian averages (l-norms) and Rademacher averages (r-norms) of operators from ℓ_{2} into Banach spaces. The results generalize the classical minoration theorem of Sudakov for the ℓ-norm, which plays an important role in the theory of stochastic processes. The estimates can be considered as a kind of interpolation or combination between Sudakov's minoration theorem and a minoration theorem of the ℓ-norm, which originates in the paper of V . Milman [M1] and which was improved by A. Pajor and N. Tomczak-Jaegermann [PaT].

Throughout this paper we use standard definitions and notations of Banach space theory. For the sake of convenience we recall some of them. Throughout this paper E, F, and G denote (real or complex) Banach spaces. Given a Banach space E we denote its closed unit ball by U_{E} and its dual space by E^{\prime}. Moreover $L(E, F)$ denotes the Banach space of all (bounded linear) operators from E into F equipped with the usual operator norm.

In order to describe the covering concept let us recall the definition of the dyadic entropy numbers $e_{n}(T)$. The nth dyadic entropy number $e_{n}(T), n \geqslant 1$, of an operator $T \in L(E, F)$ is defined to be the infimum of all $\varepsilon>0$ such that there exist $y_{1}, \ldots, y_{2^{n-1}} \in F$ for which

$$
T\left(U_{E}\right) \subseteq \bigcup_{i=1}^{2^{n \cdot 1}}\left\{y_{i}+\varepsilon U_{F}\right\}
$$

holds. For the definition of s-numbers we refer to $[\mathrm{Pi}]$ or [CS].

2. s-Covering Numbers

According to the concepts of s-numbers and dyadic entropy numbers we define an s-covering number function. Let L denote the class of all (bounded linear) operators, \mathbb{N} the set of natural numbers, and $s: L \rightarrow \ell_{\infty}(\mathbb{N})$ any s-number function. An s-covering number function is a map

$$
s=\left(s_{n, k}\right): L \rightarrow \ell_{x}(\mathbb{N} \times \mathbb{N})
$$

which associates with every operator T its s-covering numbers $s_{n, k}(T)$ and satisfies the following properties:
(SC i) Combination Property.

$$
s_{n, 1}(T)=e_{n}(T), \quad s_{1, n}(T)=s_{n}(T) \quad \text { for } \quad T \in L(E, F) \text { and } 1 \leqslant n<\infty
$$

(SC ii) Monotonicity.

$$
\begin{aligned}
& \|T\|=s_{1,1}(T) \geqslant s_{m, j}(T) \geqslant s_{n, k}(T) \geqslant 0 \\
& \quad \text { for } \quad T \in L(E, F) \text { and } n \geqslant m \geqslant 1 \text { and } k \geqslant j \geqslant 1 .
\end{aligned}
$$

(SC iii) Additivity.

$$
\begin{aligned}
s_{m+n} \quad 1 . j+k-1
\end{aligned}(S+T) \leqslant s_{m, j}(S)+s_{n, k}(T) .
$$

(SC iv) Ideal Property.

$$
\begin{aligned}
s_{n, k}(R S T) \leqslant & \|R\| s_{n, k}(S)\|T\| \\
& \text { for } \quad R \in L(G, H), S \in L(F, G), T \in L(E, F), \text { and } 1 \leqslant k, n<\infty .
\end{aligned}
$$

Moreover, some s-covering number functions satisfy an additional property called
(SC v) C-Multiplicativity. There exists a constant $C \geqslant 1$ such that

$$
\begin{aligned}
s_{m+n-1, j+k-1}(S T) \leqslant & C \cdot s_{m, j}(S) s_{n, k}(T) \\
& \text { for } \quad S \in L(F, G), T \in L(E, F), \text { and } 1 \leqslant j, k, m, n<\infty .
\end{aligned}
$$

If $C=1$, then the s-covering number function is said to be multiplicative. This concept was introduced in [CM] in a slightly modified version.

The basic examples are the
a-Covering numbers.

$$
\begin{equation*}
a_{n, k}(T)=\inf \left\{e_{n}(T-A): \operatorname{rank}(A)<k\right\} . \tag{2.1}
\end{equation*}
$$

This means that for $T \in L(E, F), a_{n, k}(T)$ is the infimum of all $\rho>0$ such that there exists an operator $A \in L(E, F)$ with $\operatorname{rank}(A)<k$ and elements $y_{i} \in F, 1 \leqslant i \leqslant 2^{n-1}$ for which

$$
(T-A)\left(U_{E}\right) \subseteq \bigcup_{i=1}^{2^{n \cdot 1}}\left\{y_{i}+\rho U_{F}\right\}
$$

Analogously:
c-Covering numbers.

$$
\begin{equation*}
c_{n, k}(T)=\inf \left\{e_{n}\left(T I_{M}^{E}\right): M \subseteq E, \operatorname{codim}(M)<k\right\} \tag{2.2}
\end{equation*}
$$

d-Covering numbers.

$$
\begin{equation*}
d_{n, k}(T)=\inf \left\{e_{n}\left(Q_{N}^{F} T\right): N \subseteq F, \operatorname{dim}(N)<k\right\} . \tag{2.3}
\end{equation*}
$$

t-Covering numbers.

$$
\begin{equation*}
t_{n, k}(T)=a_{n, k}\left(I_{\alpha} T Q_{1}\right) \tag{2.4}
\end{equation*}
$$

where $Q_{1}: \ell_{1}\left(U_{E}\right) \rightarrow E$ and $I_{x}: F \rightarrow \ell_{x}\left(U_{H^{\prime}}\right)$ are the canonical surjection and injection, respectively. (For the t-covering numbers we have a weaker form of the combination property, namely

$$
\left.\frac{1}{2} e_{n}(T) \leqslant t_{n, 1}(T) \leqslant e_{n}(T) .\right)
$$

These s-covering number functions were already considered in [CM] together with the so-called
e-Covering numbers.
$e_{n, k}(T)=\inf \left\{\varepsilon>0\right.$: there exist subspaces $M_{i} \subseteq F$, $\operatorname{dim}\left(M_{i}\right)<k$, and $y_{i} \in F, 1 \leqslant i \leqslant 2^{\prime \prime} \quad$, such that $T\left(U_{E}\right) \subseteq$ $\left.U_{i=1}^{2^{n}}\left\{y_{i}+M_{i}+\varepsilon U_{F}\right\}\right\}$.

Note that the combination property (SC i) coincides for the e - and d-covering numbers since $e_{n, 1}(T)=e_{n}(T)$ and $e_{1 . n}(T)=d_{n}(T)$. The difference between (2.3) and (2.5) becomes clear if we rewrite (2.3) into

$$
\begin{aligned}
& d_{n, k}(T)=\inf \{\varepsilon>0: \text { there exists a subspace } M \subseteq F, \\
& \operatorname{dim}(M)<k, \text { and } y_{i} \in F, 1 \leqslant i \leqslant 2^{n} \quad 1 \text {, such that } T\left(U_{E}\right) \subseteq \\
& \left.\bigcup_{i=1}^{2^{n} 1}\left\{y_{i}+M_{i}+\varepsilon U_{f}\right\}\right\},
\end{aligned}
$$

which means that in the definition of $d_{n, k}$ the coverings consist of "cylinders" $\left\{y_{i}+M_{i}+\varepsilon U_{F}\right\}$ with one common "direction" M while the directions may be different in (2.5). From this we obviously obtain

$$
e_{n, k}(T) \leqslant d_{n, k}(T) .
$$

3. Inequalities between s-Covering Numbers and s-Numbers

This section deals with basic estimates between s-covering numbers and s-numbers.

Lemma 3.1. Let $A \in L(E, F)$ be an operator of finite $\operatorname{rank}, \operatorname{rank}(A)=r$. acting between real Banach spaces E and F. Furthermore, let $N=N(A)$ and
$R=R(A)$ be the null space and range of A, respectively. For arbitrary isomorphisms

$$
X: E / N \rightarrow \ell_{2}^{r} \quad \text { and } \quad Y: R \rightarrow \ell_{2}^{r}
$$

we have

$$
\begin{align*}
& a_{3 n \cdot 2 . /}(A) \leqslant 7 e_{n}(X) e_{n}\left(Y^{1}\right) \sup _{1 \leqslant k \leqslant M}\left[2^{n \cdot(3 k+3)}\right. \\
&\left.\times\left\{\prod_{i=1}^{k} c_{i}(Y) d_{i}\left(X^{-1}\right)\right\}^{1 / k}\left\{\sum_{i=1}^{k} t_{l+i}(A)\right\}^{1 / k}\right], \tag{3.1}
\end{align*}
$$

for $1 \leqslant l, n<\infty$ with

$$
\begin{equation*}
M=\max \left\{1,\left[1+\frac{r-l}{3}\right]\right\}, \tag{3.2}
\end{equation*}
$$

where $[x]$ denotes the integer part of x.
Proof. Without loss of generality we may assume that

$$
\begin{equation*}
r=\operatorname{rank}(A) \geqslant 1, \tag{3.3}
\end{equation*}
$$

since $a_{3 n \cdot 2 . l}(A) \leqslant a_{1, \ell}(A)=a_{1}(A)=0$ in the contrary case. We factorize A canonically through the quotient map $Q: E \rightarrow E / N$ and the imbedding $I_{R}^{F}: R \rightarrow F$,

$$
\begin{equation*}
A=I_{R}^{F} A_{0} Q, \tag{3.4}
\end{equation*}
$$

and use the isomorphisms $X: E / N \rightarrow \ell_{2}^{r}$ to introduce $S: \ell_{2}^{r} \rightarrow \ell_{2}^{r}$ by

$$
\begin{equation*}
S=Y A_{0} X^{1} \quad \text { or, equivalently, } \quad A_{0}=Y^{-1} S X \tag{3.5}
\end{equation*}
$$

Next we estimate the a-covering numbers of S. According to the Schmidt representation formula there exist isometries $U, V: \ell_{2}^{r} \rightarrow f_{2}^{r}$ and a diagonal operator D with positive entries such that

$$
\begin{equation*}
S=U D V{ }^{\prime} \quad \text { and } \quad D=U^{\prime} S V . \tag{3.6}
\end{equation*}
$$

If the diagonal elements σ_{i} of D are ordered in a non-increasing sequence we then can express σ_{i} by

$$
\begin{equation*}
\sigma_{i}=a_{i}(S)=c_{i}(S)=d_{i}(S)=t_{i}(S), \quad 1 \leqslant i \leqslant r . \tag{3.7}
\end{equation*}
$$

The ideal property (SC iv) and (3.6) imply that

$$
\begin{equation*}
a_{n, 1}(S)=a_{n, l}(D), \quad 1 \leqslant l, n<\infty . \tag{3.8}
\end{equation*}
$$

An estimate for the $a_{n, l}(D)$ can be obtained as follows. Consider D_{l} : $\ell_{2}^{\prime} \rightarrow \ell_{2}^{r}, D_{1}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{r}\right)=\left(\sigma_{1} \xi_{1}, \ldots, \sigma_{1}, \xi_{1}, 0, \ldots, 0\right)$. According to the definition of $a_{n, 1}$ and a result of Gordon, lönig, and Schuilt (cf. [CS, GKS]) we oblain

$$
\begin{equation*}
a_{n, l}(D) \leqslant e_{n}\left(D-D_{l}\right) \leqslant 6 \sup _{1 \leqslant k \leqslant r-l+1} 2^{-(n-1) / k}\left\{\prod_{i=1}^{k} \sigma_{l+i-1}\right\}^{1 \cdot k} \tag{3.9}
\end{equation*}
$$

It follows from (3.7) and (3.8) that

$$
\begin{equation*}
\left.a_{n, l}(S) \leqslant 6 \sup _{1 \leqslant k \leqslant r-1+1} 2 \text { (n } 1\right): k\left\{\prod_{i: 1}^{k} t_{l+i} \quad(S)\right\}^{1: k} \tag{3.10}
\end{equation*}
$$

Note that the range of k is not emply because of (3.3).
In order to replace the opesator S by A we use (3.5) and the multiplicativity, injectivity, and surjectivity of the symmetrized approximation numbers t_{i}. The multiplicativity of the t_{i} allows us to write

$$
t_{i+i+k-z}(R S T) \leqslant c_{i}(R) t_{j}(S) d_{k}(T)
$$

(cf. [CS]). Hence we obtain from (3.5)
$t_{l+3 i-3}(S) \leqslant c_{i}(Y) t_{i+i-1}\left(A_{0}\right) d_{i}\left(X^{1}\right)=c_{i}(Y) t_{l-i-1}(A) d_{i}\left(X^{-1}\right)$.
Now we insert (3.11) into (3.10). For this purpose let

$$
\gamma_{i}=\left\{\prod_{i=1}^{\prime} t_{l+i-1}(S)\right\}^{1 ;}
$$

be the non-increasing sequence of geometric means of $t_{l}(S), t_{t+1}(S), \ldots$ Then

$$
\begin{gathered}
2^{(n-1) j \gamma_{j} \leqslant 2^{(n \cdot 1): 6 \gamma_{j} \leqslant 2 \cdot(n-1) \cdot 6} t_{l}(S) \quad \text { for } j=4,5,6 ;} \begin{array}{c}
2^{-(n-1) j_{\gamma_{j}} \leqslant 2 \quad(n \cdot 1)(3 k+3) \gamma_{j k} \leqslant 2^{-(n-1):(3 k+3)}\left\{\prod_{i=1}^{k} t_{l \div 3 i}-3(S)\right\}^{1: k}} \\
\text { for } j=3 k+1,3 k+2,3 k+3 .
\end{array} .
\end{gathered}
$$

Furthermore

$$
2^{-(n-1) / \gamma_{1}} \leqslant 2 \cdot\left(n-1 / 66 t_{l}(S) \quad \text { for } \quad j=1,2,3 .\right.
$$

Hence (3.10) becomes

$$
\begin{align*}
a_{n, 1}(S) & \leqslant 6 \sup _{1 \leqslant k<x} 2^{(n-1):(3 k+3)}\left\{\prod_{i-1}^{k} t_{1+3 i-3}(S)\right\}^{1: k} \\
& \leqslant 7 \sup _{1 \leqslant k<x} 2^{n:(3 k+3)}\left\{\prod_{i=1}^{k} t_{1+3 i} 3(S)\right\}^{1: k} \tag{3.12}
\end{align*}
$$

where non-zero terms occur only for $l+3 k-3 \leqslant r$, i.e., $1 \leqslant k \leqslant M$, cf. (3.2). From (3.11) and (3.12) we obtain

$$
a_{n, l}(S) \leqslant 7 \sup _{1 \leqslant k \leqslant M} 2^{-n \cdot(3 k+3)}\left\{\prod_{i=1}^{k} c_{i}(Y) d_{i}\left(X^{1}\right)\right\}^{1 \cdot k}\left\{\prod_{i-1}^{k} t_{l+i}(A)\right\}^{1: k}
$$

The multiplicativity ($\mathrm{SC} v$) and (3.4), (3.5) imply that

$$
a_{3 n-2.1}(A) \leqslant a_{3 n} \quad 2.1\left(A_{0}\right) \leqslant e_{n}\left(Y^{1}\right) a_{n .1}(S) e_{n}(X)
$$

therefore

$$
\begin{aligned}
a_{3 n \quad 2,1}(A) \leqslant & 7 e_{n}(X) e_{n}\left(Y^{1}\right) \sup _{1 \leqslant k \leqslant M}[2 \cdots n:(3 k+3) \\
& \left.\times\left\{\prod_{i=1}^{k} c_{i}(Y) d_{i}\left(X^{-1}\right)\right\}^{1 / k}\left\{\prod_{i=1}^{k} t_{1+1}, 1(A)\right\}^{1: k}\right]
\end{aligned}
$$

Remark 3.1. If E and F are complex Banach spaces we must replace

$$
2^{n:(3 k+3)} \text { by } 2^{n:(6 k+6)} \text { in (3.1). }
$$

From this lemma we derive some conclusions. Let us first recall the definition of local injective, resp. surjective distances, based on the Banach-Mazur distance $d(E, F)$ of Banach spaces E, F :

$$
d(E, F)=\left\{\begin{array}{l}
\inf \left\{\mid T_{\|}^{\|}\left\|T^{1}\right\| \text { for all isomorphisms } T \in L(E, F)\right\} \\
x
\end{array} \quad \text { if } E \text { and } F \text { are not isomorphic. } . ~ l\right.
$$

The nth local injective distance $\delta_{n}(E)$ is given as

$$
\delta_{n}(E)=\sup \left\{d\left(M, \ell_{2}^{m}\right): M \subseteq E, m=\operatorname{dim}(M) \leqslant n\right\}
$$

and the nth local surjective distance $\delta^{(n)}(E)$ as

$$
\delta^{(n)}(E)=\sup \left\{d\left(E / M, \ell_{2}^{m}\right): M \subseteq E, m=\operatorname{codim}(M) \leqslant n\right\}
$$

Corollary 3.1. Under the assumptions of Lemma 3.1 the following inequality holds

$$
\begin{equation*}
a_{n .1}(A) \leqslant 7 \delta^{(r)}(E) \delta_{r}(F) \sup _{1 \leqslant k \leqslant M} 2^{-n:(9 k+9)}\left\{\prod_{i=1}^{k} t_{l+i} \quad 1(A)\right\}^{1: k} \tag{3.13}
\end{equation*}
$$

Proof. Given $\varepsilon>0$ we choose X and Y in Lemma 3.1 with

$$
\begin{aligned}
& \left\|X_{\|}^{\|}\right\| X \quad{ }_{\|}^{1} \| \leqslant(1+\varepsilon) d\left(E / N, \ell_{2}^{r}\right) \leqslant(1+\varepsilon) \delta^{(r)}(E) \\
& \|Y\| \| Y{ }^{1} \mid \leqslant(1+\varepsilon) d\left(R, f_{2}^{r}\right) \leqslant(1+\varepsilon) \delta_{r}(F) .
\end{aligned}
$$

All terms in (3.1) containing X or Y are estimated by the operator norms. Hence for $3 m-2 \leqslant n \leqslant 3 m$ we have

$$
\begin{aligned}
a_{n, 1}(A) \leqslant & a_{3 m-2.1}(A) \leqslant 7(1+\varepsilon)^{2} \delta^{(r)}(E) \delta_{r}(F) \\
& \times \sup _{1 \leqslant k \leqslant M} 2^{-m i(3 k+3)}\left\{\prod_{i-1}^{k} t_{l+i \cdot 1}(A)\right\}^{1: k}
\end{aligned}
$$

Since $m \geqslant n / 3$ the proof is complete.
Now an important result of Pisier [P1, P2] is used to obtain further consequences of Lemma 3.1.

Theorem 3.1. (Pisier). For each $\alpha>\frac{1}{2}$ there is a constant $C(\alpha)$ such that for any n-dimensional (real or complex) Banach space E there is an isomorphism X from E onto ℓ_{2}^{n} (real or complex, respectively), such that

$$
\begin{equation*}
d_{k}(X) \leqslant C(\alpha)\left(\frac{n}{k}\right)^{x} \quad \text { and } \quad d_{k}\left(X^{-1}\right) \leqslant C(\alpha)\left(\frac{n}{k}\right)^{\alpha} \tag{3.14}
\end{equation*}
$$

for all $k, 1 \leqslant k \leqslant n$. (For $k>n$ we have $d_{k}(X)=c_{k}\left(X^{-1}\right)=0$ in any case.) Moreover, the constant $C(\alpha)$, only depending on α, can be chosen of order $O\left(x-\frac{1}{2}\right)^{-1}$ for $x \downarrow \frac{1}{2}$.

The corresponding result concerning the dyadic entropy numbers of X follows immediately from Theorem 3.1 and the following inequality from [C] (cf. [CS, P2].

THEOREM 3.2. For each $p, p>0$, there is a constant c_{p} such that for all operators T we have

$$
\begin{equation*}
\sup _{1 \leqslant k \leqslant n} k^{1 ; \rho} e_{k}(T) \leqslant c_{p} \sup _{1 \leqslant k \leqslant n} k^{1: p} t_{k}(T), \quad 1 \leqslant n<x \tag{3.15}
\end{equation*}
$$

and c_{p} remains bounded if p varies in a compact suiset of $(0, \infty)$.
If we note that $t_{k}(X)=d_{k}\left(I_{x} X\right) \leqslant d_{k}(X)$ and analogously $t_{k}\left(X^{1}\right)=$ $c_{k}\left(X^{1} Q_{1}\right) \leqslant c_{k}\left(X^{-1}\right)$ we obtain from (3.14) and (3.15), by setting $p=1 / x$,

$$
\begin{aligned}
k^{x} e_{k}(T) & \leqslant c_{1: x} \sup _{1 \leqslant k \leqslant n} k^{\alpha} t_{k}(T) \leqslant c_{1: x} \sup _{1 \leqslant k \leqslant n} k^{\alpha} C(x)\left(\frac{n}{k}\right)^{x} \\
& =c_{1: x} C(x) n^{x}, \quad 1 \leqslant k \leqslant n .
\end{aligned}
$$

Hence we may state the following corollary.
Corollary 3.2. Let $X: E \rightarrow t_{2}^{n}$ be the isomorphism from Theorem 3.1. Then

$$
\begin{equation*}
\max \left\{e_{k}(X), e_{k}\left(X^{1}\right)\right\} \leqslant c_{1: x} C(\alpha)\left(\frac{n}{k}\right)^{x} \quad \text { for all } k, 1 \leqslant k<\infty, \tag{3.16}
\end{equation*}
$$

where $C(\alpha)$ and $c_{1, x}$ are the constants of (3.14) and (3.15). Moreover, for a modified $C(x)$, which is also of order $O\left(x-\frac{1}{2}\right)^{1 / 2}$ for $\alpha \downarrow \frac{1}{2}$, we have

$$
\begin{equation*}
\max \left\{e_{k}(X), e_{k}\left(X^{-1}\right), d_{k}(X), c_{k}\left(X^{-1}\right)\right\} \leqslant C(x)\left(\frac{n}{k}\right)^{x} \quad \text { for } \quad 1 \leqslant k<x \tag{3.17}
\end{equation*}
$$

These considerations lead to a more sophisticated corollary of Lemma 3.1.

Corollary 3.3. For any $\beta, \beta>1$, there exists a constant $C(\beta)$ of order $C(\beta)=O(\beta-1)^{\cdot 2}$ for $\beta \downarrow 1$ such that for any operator $A \in L(E, F)$ with $\operatorname{rank}(A)=r$ between real Banach spaces E and F

$$
\begin{equation*}
a_{n, 1}(A) \leqslant C(\beta)\left(\frac{r}{n}\right)^{2 \beta} \sup _{1 \leqslant k \leqslant M} 2^{-n:(9 k+9)}\left(\frac{n}{9 k+9}\right)^{\beta}\left\{\prod_{i=1}^{k} t_{l+i} \quad 1(A)\right\}^{1 k}, \tag{3.18}
\end{equation*}
$$

for all $l, n, 1 \leqslant l, n<\infty, M$ being given by (3.2).
Proof. Put $\alpha=\beta / 2>\frac{1}{2}$. Then by 3.17 there are X and Y such that
$\max \left\{e_{k}(X), e_{k}\left(Y^{-1}\right), c_{k}(Y), d_{k}\left(X^{-1}\right)\right\} \leqslant C(x)\left(\frac{r}{k}\right)^{x}, \quad 1 \leqslant k<\infty$.
We know that $C(\alpha)=O\left(\alpha-\frac{1}{2}\right)^{1 / 2}=O(\beta-1)^{12}$ for $\beta \downarrow 1$. Hence it follows from (3.1) that

$$
a_{3 n} \quad 2.1(A) \leqslant 7 e^{2} C^{4}(\alpha)\left(\frac{r}{n}\right)^{\beta} \sup _{1 \leqslant k \leqslant M} 2^{n:(3 k+3)}\left(\frac{r}{k}\right)^{\beta}\left\{\prod_{i=1}^{k} t_{l+i-1}(A)\right\}^{1 k},
$$

where $k!\geqslant(k / e)^{k}$ is used. Estimating

$$
\left(\frac{1}{k}\right)^{\beta} \leqslant 18^{\beta}\left(\frac{n}{9 k+9}\right)^{\beta}
$$

and passing from $a_{3 n}$ 2./ (A) to $a_{n, 4}(A)$ as in the proof of Corollary 3.1, we
finally obtain the inequality (3.18) with the constant $C(\beta)=7 e^{2} 18^{\beta} C^{4}(\alpha)$ which is indeed of order $O(\beta-1)^{-2}$ for $\beta \downarrow 1$.

Remark 3.2. If the Banach spaces X and Y are complex Banach spaces then $2^{-n /(9 k+9)}$ in (3.13) and (3.18) must be replaced by $2^{-n(18 k+18)}$.

Now let us remove the restriction on A being a finite rank operator.
Proposition 3.1. Let $\beta>1$ and $T \in L(E, F)$ be an operator between real Banach spaces. Then

$$
\begin{align*}
a_{n, l}(T) \leqslant & a_{3 m+l}(T)+D(\beta)\left(\frac{m+l}{n}\right)^{2 \beta} \sup _{1 \leqslant k \leqslant m}\left[2^{-n_{i}(9 k+9)}\right. \\
& \left.\times\left(\frac{n}{9 k+9}\right)^{\beta}\left\{\prod_{i=1}^{k} a_{l+i} \quad 1(T)\right\}^{1: k}\right] \tag{3.20}
\end{align*}
$$

for $1 \leqslant l, m, n<\infty$ with a constant $D(\beta)$, depending only on β and being of order $O(\beta-1)^{-2}$ for $\beta \downarrow 1$.

Proof. Given $\varepsilon>0$ we determine an operator $A \in L(E, F)$ with $r=\operatorname{rank}(A)<3 m+1$ such that

$$
\begin{equation*}
\left\|T-A_{i}\right\| \leqslant(1+\varepsilon) a_{3 m+l}(T) \tag{3.21}
\end{equation*}
$$

From

$$
a_{n, l}(T) \leqslant\|T-A\|+a_{n, l}(A)
$$

(cf. (SC iii) and by applying (3.18) to A and using $r<3(m+l)$ and $M=$ $\max \{1,[1+(r-l) / 3]\} \leqslant m$ we obtain

$$
\begin{align*}
a_{n, l}(T) \leqslant & (1+\varepsilon) a_{3 m+l}(T)+9^{\beta} C(\beta)\left(\frac{m+l}{n}\right)^{2 \beta} \sup _{1 \leqslant k \leqslant m}\left[2^{-n:(9 k+9)}\right. \\
& \left.\times\left(\frac{n}{9 k+9}\right)^{\beta}\left\{\prod_{i=1}^{k} t_{l+i} \quad(A)\right\}^{1 / k}\right] . \tag{3.22}
\end{align*}
$$

In order to eliminate $t_{t+i-1}(A)$ we derive from (3.21)

$$
\begin{aligned}
t_{l+i-1}(A) & \leqslant\|A-T\|+t_{l+i-1}(T) \leqslant(1+\varepsilon) a_{3 m+l}(T)+a_{l+i-1}(T) \\
& \leqslant(2+\varepsilon) a_{l+i-1}(T) \quad \text { for } \quad 1 \leqslant i \leqslant m
\end{aligned}
$$

Hence, since for $\beta \downarrow 1$

$$
D(\beta)=2 \cdot 9^{\beta} C(\beta)=O(\beta-1)^{-2}
$$

(3.22) implies the desired estimate (3.20).

The next inequality relates $a_{n, 1}(T)$ to the $\ell_{p, x}$-norm of a finite subsequence of the approximation number sequence.

Proposition 3.2. Let $0<p<\infty$ and $T \in L(E, F)(E, F$ real Banach spaces). Then

$$
\begin{align*}
a_{n, l}(T) \leqslant & a_{l+m-1}(T)+C(p)\left(\frac{m+l}{n}\right)^{2} \log ^{2}\left(\frac{m+l}{n}+2\right) \\
& \times n^{-1 ; p} \sup _{1 \leqslant k \leqslant m} k^{1 ; p} a_{l+k} \quad(T), \tag{3.23}
\end{align*}
$$

for all $l, m, n, 1 \leqslant l, m, n<\infty$, where $C(p)$ is a constant depending only on p.
Proof. Because of $k!\geqslant(k / e)^{k}$ we have

$$
\begin{align*}
\left\{\prod_{i-1}^{k}\right. & \left.a_{l+i-1}(T)\right\}^{l: k} \\
& \leqslant(k!)^{-1: p k} \sup _{1 \leqslant j \leqslant k} j^{1: p} a_{l+j} \quad 1(T) \\
& \leqslant\left(\frac{e}{k}\right)^{1 / p} \sup _{1 \leqslant k \leqslant m} k^{1 / p} a_{l-k-1}(T) \quad \text { for } \quad 1 \leqslant k \leqslant m . \tag{3.24}
\end{align*}
$$

We now insert (3.24) into (3.20) and choose an appropriate $\beta>1$. Note that for the first summand on the right-hand side of (3.20)

$$
a_{l+m} \quad(T) \geqslant a_{3 m+1}(T)
$$

For the second summand we apply (3.24) and get from (3.20)

$$
\begin{align*}
a_{n, l}(T) \leqslant & a_{l+m}(T)+e^{1: p} D(\beta)\left(\frac{m+l}{n}\right)^{2 \beta}\left\{\sup _{1 \leqslant k \leqslant m} k^{1: p} a_{l+k-1}(T)\right\} \\
& \times\left\{\sup _{1 \leqslant k \leqslant m} 2^{-n(9 k+9)}\left(\frac{n}{9 k+9}\right)^{\beta} k^{-1 ; p}\right\} \tag{3.25}
\end{align*}
$$

Estimating $k^{1 / p}$ by

$$
k^{-1: p} \leqslant 18^{1 / p} n^{-1: p}\left(\frac{n}{9 k+9}\right)^{1 / p}
$$

and setting $x=n /(9 k+9)$, we may rewrite (3.25) as

$$
\begin{align*}
a_{n, l}(T) \leqslant & a_{l+m}(T)+(18 e)^{1 ; p} D(\beta)\left(\frac{m+l}{n}\right)^{2 \beta} n^{-1: p} \\
& \times\left\{\sup _{1 \leqslant k \leqslant m} k^{1 ; p} a_{l+k \cdot 1}(T)\right\}\left\{\sup _{0<x<x} 2^{x} x^{\beta+1 ; p}\right\} \tag{3.26}
\end{align*}
$$

With the function $\sigma(t):=\sup _{0<x<x} 2^{-x} x^{t}=(t / e \cdot \ln 2)^{t}$ and the constant $C(\beta, p):=(18 e)^{1: p} D(\beta) \sigma(\beta+1 / p)$ we get from (3.26)

$$
\begin{align*}
a_{n, l}(T) \leqslant & a_{l+m}(T)+C(\beta, p)\left(\frac{m+l}{n}\right)^{21 \beta} 11\left(\frac{m+l}{n}\right)^{2} n^{1, n} \\
& \times\left\{\sup _{1 \leqslant k \leqslant m} k^{1 / p} a_{l+k} \quad 1(T)\right\} \tag{3.27}
\end{align*}
$$

Fixing p, we see from the definition of $C(\beta, p)$ that $C(\beta, p)=O(\beta-1)^{-2}$ for $\beta \downarrow 1$. If we set

$$
\begin{equation*}
\beta=1+\left[\log \left(\frac{m+l}{n}+2\right)\right]^{1} \tag{3.28}
\end{equation*}
$$

then $1<\beta<3$ for all $l, m, n \geqslant 1$ and thus there is a constant $C(p)$ such that

$$
C(\beta, p) \leqslant C(p)(\beta-1)^{2} \quad \text { for } \quad 1<\beta<3
$$

With β given in (3.28) it is easy to verify that

$$
C(\beta, p)\left(\frac{m+n}{n}\right)^{2 ; \beta} \quad: \leqslant e^{2} C(p)\left[\log \left(\frac{m+l}{n}+2\right)\right]^{2} .
$$

Together with (3.27) this completes the proof.
Remark 3.3. In case of complex Banach spaces the value $2^{n /(9 k+9)}$ must be replaced by $2^{-n:(18 k+8)}$ in (3.20), whereas (3.23) holds in the real and complex cases (clearly $C(p)$ must be modified).

The next theorems deal with inequalities related to Theorem 3.2.
Theorem 3.3. Let $0<p<\infty$ and $T \in L(E, F)$, where E and F can be either real or complex Banach spaces. Then there exists a constant $C(p)$, only depending on p, such that

$$
\begin{equation*}
\sup _{1 \leqslant n \leqslant m} n^{1 p} a_{n, 4}(T) \leqslant C(p) \sup _{1 \leqslant n \leqslant m} n^{1 \cdot p} a_{l+n} \quad(T) \tag{3.29}
\end{equation*}
$$

for all $l, m, 1 \leqslant l \leqslant m<\infty$.
Theorem 3.4. Let $0<p<x$ and $T \in L(E, F)$. Then there exists a constant $C(p)$ such that

$$
\begin{equation*}
\sup _{1 \leqslant n \leqslant m}(l+n-1)^{1 / p} a_{n, i}(T) \leqslant C(p) \sup _{1 \leqslant n \leqslant m}(l+n-1)^{1 / p} a_{l+n \cdot 1}(T) \tag{3.30}
\end{equation*}
$$

for all $l, m, 1 \leqslant l, m<\infty$.

Proofs. (Theorem 3.3) Suppose that n is given such that $1 \leqslant n \leqslant m$. We apply (3.23) (if E and F are complex Banach spaces cf. Remark 3.3) for l, m, n with $m=n$

$$
\begin{aligned}
n^{1: p} a_{n, l}(T) \leqslant & n^{1: p} a_{l+n} \quad(T) \\
& +4 \log ^{2} 4 \cdot C(p) \sup _{l \leqslant k \leqslant n} k^{1: p} a_{l+k} \quad 1(T) .
\end{aligned}
$$

For $\tilde{C}(p)=1+4 \log ^{2} 4 \cdot C(p)$ we obtain

$$
\begin{aligned}
n^{1: p} a_{n, 1}(T) & \leqslant \widetilde{C}(p) \sup _{1 \leqslant k \leqslant n} k^{1 \cdot p} a_{l+k-1}(T) \\
& \leqslant \widetilde{C}(p) \sup _{1 \leqslant n \leqslant m} n^{1 \cdot p} a_{l+n \cdot 1}(T),
\end{aligned}
$$

that is, (3.29).
(Theorem 3.4) According to (3.29) we have for $1 \leqslant m$

$$
\begin{align*}
& \sup _{1 \leqslant n \leqslant m}(l+n-1)^{1 ; p} a_{n, l}(T) \\
& \quad \leqslant \sup _{1 \leqslant n \leqslant m}(2 n)^{1 ; p} a_{n, l}(T) \leqslant 2^{1 / p} C(p) \sup _{1 \leqslant n \leqslant m} n^{1 ; p} a_{l+n-1}(T) \\
& \quad \leqslant 2^{1 / p} C(p) \sup _{1 \leqslant n \leqslant m}(l+n-1)^{1 / p} a_{l+n}(T) . \tag{3.31}
\end{align*}
$$

Without any restrictions on l and m, we have

$$
\begin{align*}
& \sup _{1 \leqslant n<1}(l+n-1)^{1 / p} a_{n, l}(T) \\
& \quad \leqslant(2 l)^{1 / p} a_{1, l}(T)=(2 l)^{1: p} a_{l}(T) \leqslant 2^{1 / p} \sup _{1 \leqslant n \leqslant m}(l+n-1)^{1 \cdot p} a_{l+n} \quad(T) . \tag{3.32}
\end{align*}
$$

Combining (3.31) and (3.32) we obtain (3.30). More precisely, for $l \leqslant m$ we use (3.31) and (3.32), and for $l>m$ we start from

$$
\sup _{1 \leqslant n \leqslant m}(l+n-1)^{1 / p} a_{n, l}(T) \leqslant \sup _{1 \leqslant n<l}(l+n-1)^{1 / p} a_{n, l}(T)
$$

and apply (3.32).
The preceding two theorems are also valid for other s-covering numbers. We only mention the following result which corresponds to Theorem 3.4.

Theorem 3.5. Let $0<p<\infty$ and $T \in L(E, F)$. Then there exists a constant $C(p)$ such that

$$
\begin{equation*}
\sup _{1 \leqslant n \leqslant m}(l+n-1)^{1 ; p} a_{n, l}(T) \leqslant C(p) \sup _{1 \leqslant n \leqslant m}(l+n-1)^{1: p} a_{l+n} \quad(T) \tag{3.33}
\end{equation*}
$$

for $s=c, d, t(c f .(2.2)-(2.4))$ and all $l, m, 1 \leqslant l, m<\infty$.
Proof. For $s=t$ the desired estimate is an obvious consequence of Theorem 3.4 and the definition of t. For the other cases $s=c, d$ recall the definition of Gelfand and Kolmogorov numbers based on the approximation numbers

$$
\begin{aligned}
& c_{n}(T)=a_{n}\left(I_{x} T\right) \\
& d_{n}(T)=a_{n}\left(T Q_{1}\right),
\end{aligned}
$$

where Q_{1} and I_{∞} are the canonical surjection and injection, respectively (cf. [CS]). In order to prove (3.33) for $s=c, d$ we show that

$$
\begin{align*}
& c_{n, l}(T) \leqslant 2 a_{n, l}\left(I_{x} T\right) \tag{3.34}\\
& d_{n, l}(T) \leqslant a_{n, l}\left(T Q_{1}\right) \tag{3.35}
\end{align*}
$$

These inequalities are consequences of

$$
\begin{align*}
& c_{n, l}(S) \leqslant a_{n, l}(S) \tag{3.36}\\
& d_{n, l}(S) \leqslant a_{n, l}(S) \tag{3.37}
\end{align*}
$$

for any operator S. Since (3.37) is already proved in [CM] we only give the argument for the proof of (3.36). Let A be an operator with $\operatorname{rank}(A)<l$ such that

$$
e_{n}(S-A) \leqslant a_{n, 1}(S)+\varepsilon=\rho
$$

Hence

$$
(S-A)\left(U_{E}\right) \subseteq \bigcup_{i=1}^{2^{n+1}}\left\{y_{i}+\rho U_{F}\right\}
$$

for $y_{i} \in F, 1 \leqslant i \leqslant 2^{n}{ }^{1}$. For $M=N(A)$, the null space of A, we have $\operatorname{codim}(M)<l$ and

$$
\left(S I_{M}^{F}\right)\left(U_{E}\right) \subseteq \bigcup_{i=1}^{2^{n-1}}\left\{y_{i}+\rho U_{F}\right\}
$$

hence

$$
c_{n, l}(S) \leqslant e_{n}\left(S I_{M}^{F}\right) \leqslant a_{n, l}(S)+\varepsilon .
$$

Because of the surjectivity (resp. injectivity) up to a factor 2 of the dyadic entropy numbers we have

$$
\begin{aligned}
& c_{n, l}(T) \leqslant 2 c_{n, t}\left(I_{\mathrm{x}} T\right) \leqslant 2 a_{n, 1}\left(I_{x} T\right) \\
& d_{n, t}(T) \leqslant d_{n, \prime}\left(T Q_{1}\right) \leqslant a_{n, t}\left(T Q_{1}\right) .
\end{aligned}
$$

These inequalities complete the proof of (3.33) for $s=c, d$.

4. Inequalities between s-Covering Numbers, Gaussian Averages, and Rademacher Averages

This section is devoted to the investigation of inequalities between d-covering numbers of operators from a Hilbert space into a Banach space on one side and Gaussian or Rademacher averages on the other side. These inequalities complement and generalize V. Milman's discovering that the Gaussian average or the ℓ-norm is an appropriate parameter for estimating Gelfand and Kolmogorov numbers [M1, M2].

For this purpose recall the definition of the so-called Gaussian average or ℓ-norm of an operator T from ℓ_{2}^{n} into an arbitrary Banach space E. The t-norm $f(T)$ of T is defined as

$$
\begin{equation*}
\ell(T)=\left(\int_{\mathbb{R}^{n}}\|T x\|^{2} d \gamma_{n}(x)\right)^{1 \cdot 2}, \tag{4.1}
\end{equation*}
$$

where γ_{n} denotes the canonical (normalized) Gaussian measure on the euclidean space \mathbb{R}^{n}. Moreover, for any operator T from f_{2} into E we define $f(T)$ as

$$
\begin{equation*}
\ell(T)=\sup \left\{\ell(T X): X \in L\left(\ell_{2}^{n}, \ell_{2}\right) \text { for some } n,\|X\| \leqslant 1\right\} . \tag{4.2}
\end{equation*}
$$

We use a minoration of $f(T)$ which originated in the paper of Milman [M1] and was improved by A. Pajor and N. TomczakJaegermann [PaT] (cf. [G, P2]) in the following theorem.

Theorem 4.1. Let E be a Banach space and let $T \in L\left(t_{2}, E\right)$ be a compact operator. Then

$$
\begin{equation*}
\sup _{1 \leqslant k<\pi} k^{1 / 2} d_{k}(T) \leqslant C \cdot f(T), \tag{4.3}
\end{equation*}
$$

where $C \geqslant 1$ is a universal constant.
Remark 4.1. Note that there is a dual version (4.3) for compact operators $T \in L\left(E, \ell_{2}\right)$, namely

$$
\sup _{1 \leqslant k<x} k^{1: 2} c_{k}(T) \leqslant C \cdot f\left(T^{\prime}\right)
$$

which is based upon $c_{k}(T)=d_{k}\left(T^{\prime}\right)$ for all operators T. But (4.3) is also a consequence of (4.4) because of $d_{k}(T)=c_{k}\left(T^{\prime}\right)$ for compact operators and $f(T)=\ell\left(T^{\prime \prime}\right)$, for $T \in L\left(\ell_{2}, E\right)$.

Combining (4.3) with Theorem 3.5 for $s=d$ we may state the following minoration theorem of the Gaussian average (ℓ-norm) by d-covering numbers.

Theorem 4.2. Let E be a Banach space and let $T \in L\left(t_{2}, E\right)$ be a compact operator. Then

$$
\begin{equation*}
\sup _{1 \leqslant l, n<x}(l+n-1)^{1, p} d_{n, l}(T) \leqslant C \cdot \ell(T), \tag{4.5}
\end{equation*}
$$

where $C \geqslant 1$ is a universal constant.
The inequality (4.5) includes the classical Sudakov minoration theorem [Su] for $l=1$ and the inequality (4.3) for $n=1$. The version corresponding to (4.4) is the minoration of $\ell\left(T^{\prime}\right), T \in L\left(E, \ell_{2}\right)$ by c-covering numbers:

$$
\begin{equation*}
\sup _{1 \leqslant l . n<x}(l+n-1)^{1: p} c_{n, l}(T) \leqslant C \cdot \ell(T) . \tag{4.6}
\end{equation*}
$$

Next we want to derive similar inequalities for Rademacher averages instead of Gaussian averages. For this purpose let $\Phi=\left\{f_{1}, \ldots, f_{m}\right\}$ be an orthonormal basis of ℓ_{2}^{m} and $T \in L\left(\ell_{2}^{m}, E\right)$ be an operator. The Rademacher average or r-norm of T with respect to Φ is given by

$$
i_{\Phi}(T)=\left(\begin{array}{c}
\text { Average } \\
i_{i}= \pm 1
\end{array} \sum_{i=1}^{m} \varepsilon_{i} T\left(f_{i}\right)^{!^{2}}\right)^{1: 2}
$$

It is well-known that $\imath_{\Phi}(T) \leqslant c \cdot \ell(T)$ for some universal constant c, independent of the special choice of Φ. The following minoration theorem for the Rademacher averages was proved in [CP].

Theorem 4.3. Let E be a Banach space and let $T \in L\left(\ell_{2}^{m}, E\right)$ be an operator of rank n. Then

$$
\begin{equation*}
\sup _{1 \leqslant k \leqslant n}\left(\log \left(1+\frac{n}{k}\right)\right)^{-1 / 2} k^{1: 2} d_{k}(T) \leqslant C \cdot i_{\Phi}(T) \tag{4.7}
\end{equation*}
$$

for any orthonormal basis Φ in ℓ_{2}^{m}. The constant C is a universal constant.
Combining Theorem 3.5 with Theorem 4.3 , we obtain the Rademacher version of Theorem 4.2.

Theorfm 4.4. Let E be a Banach space and let $T \in L\left(f_{2}^{m}, E\right)$ be an operator of rank n. Then

$$
\begin{equation*}
\sup _{1 \leqslant k . l<}\left(\log \left(1+\frac{n}{k+l-1}\right)\right)^{1.2}(k+l-1)^{12} d_{k . l}(T) \leqslant C \cdot \operatorname{l}_{\Phi}(T) \tag{4.8}
\end{equation*}
$$

for a universal constant C and any orthonormal basis Φ in f_{2}^{m}.
Proof. Let $k \geqslant 1$. From (3.33) we get

$$
\begin{aligned}
& (l+k-1) d_{k, l}(T) \\
& \quad \leqslant C(1) \sup _{1 \leqslant i \leqslant k}(l+j-1) d_{l+1, l}(T) \\
& \leqslant
\end{aligned} \quad \begin{aligned}
& (1) \sup _{1 \leqslant i \leqslant k}(l+j-1)^{12}\left(\log \left(1+\frac{n}{k+j-1}\right)\right)^{+12} \\
& \quad \times \sup _{1 \leqslant j \leqslant k}(l+j-1)^{12}\left(\log \left(1+\frac{n}{l+j-1}\right)\right)^{12} d_{l+1 \quad 1}(T) .
\end{aligned}
$$

The first supremum on the right-hand side equals

$$
(l+k-1)^{1.2}\left(\log \left(1+\frac{n}{l+k-1}\right)\right)^{1.2}
$$

since $x \rightarrow x \cdot \log (1+n / x)$ is an increasing function. The second supremum can be estimated by $C \cdot ?_{\Phi}(T)$ according to (4.7). Hence

$$
(l+k-1)^{1 / 2}\left(\log \left(1+\frac{n}{l+k-1}\right)\right)^{12} d_{k, l}(T) \leqslant C \cdot C(1) \cdot 3_{\infty}(T)
$$

There are dual versions of (4.7) and (4.8) for operators $T \in L\left(E, f_{2}^{m}\right)$, of rank n, namely

$$
\begin{equation*}
\sup _{1 \leqslant k \leqslant n}\left(\log \left(1+\frac{n}{k}\right)\right)^{12} k^{12} c_{k}(T) \leqslant C \cdot i_{\phi}\left(T^{\prime}\right) \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{1 \leqslant l, k<x}\left(\log \left(1+\frac{n}{k+l-1}\right)\right)^{12}(k+l-1)^{12} c_{k .1}(T) \leqslant C \cdot i_{\phi}\left(T^{\prime}\right) . \tag{4.10}
\end{equation*}
$$

The last inequality can be interpretated as follows:
Let $B \subset \mathbb{R}^{n}$ be a compact, convex, and symmetric set with non-empty interior. Equipped with the Minkowski functional $\left\|_{i} \cdot\right\|_{B}$ of B the vector space \mathbb{R}^{n} becomes a normed vector space which is isomorphic to ℓ_{2}^{n} and admitting B as its unit ball. Let us apply (4.10) to the canonical isomorphism

$$
T:\left(\mathbb{R}^{n},\left.\right|_{1} \cdot \|_{B}\right) \rightarrow\left(\mathbb{R}^{n},|\cdot|_{2}\right)=f_{2}^{n} .
$$

Corollary 4.1. For $0<p<\infty$ there exists a constant C_{p}, only depending on p, and for each pair $(k, l), 1 \leqslant k<x, 1 \leqslant l<n$, there exists an l-dimensional subspace $M \subset \mathbb{R}^{\prime \prime}$ such that

$$
\begin{align*}
& e_{k}(M \cap B) \leqslant C_{p} \cdot\left\{\begin{array}{c}
\text { Average } \left.\sup _{\substack{ \\
t_{i}= \pm 1 \\
t=\left(t_{1}, \ldots, t_{n}\right) \in B}}\left|\sum_{i=1}^{n} \varepsilon_{i} t_{i}\right|^{p}\right\}^{1: p} \\
\end{array}\right. \\
& \times\left(\log \left(1+\frac{n}{n+k-1}\right)\right)^{1 / 2}(n+k-1)^{1: 2} . \tag{4.11}
\end{align*}
$$

Therefore $M \cap B$ is covered by 2^{k-1} euclidean balls of radius ρ, where ρ is bounded by the right-hand side of (4.11). In particular, for each $l, 1 \leqslant l \leqslant n$, there is an l-dimensional subspace $M \subset \mathbb{R}^{n}$ such that

$$
e_{l}(M \cap B) \leqslant C_{p} \cdot\left\{\begin{array}{c}
\text { Average } \tag{4.12}\\
\varepsilon_{i}= \pm 1
\end{array} \sup _{t=\left(t_{1} \ldots, t_{n}\right) \in B}\left|\sum_{i=1}^{n} \varepsilon_{i} t_{i}\right|^{p}\right\}^{1 ; p} n^{-1 / 2}
$$

For operators $T \in L\left(\ell_{1}^{n}, \ell_{2}\right)$ we have the following modification of (4.9), which was proved in [CP].

Theorem 4.5. There exists a universal constant C such that

$$
\begin{equation*}
\sup _{1 \leqslant k \leqslant n}\left(\log \left(1+\frac{n}{k}\right)^{-1 ; 2} k^{1 ; 2} c_{k}(T) \leqslant C\|T\|\right. \tag{4.13}
\end{equation*}
$$

for all $T \in L\left(\ell_{2}^{n}, \ell_{2}\right)$ and all $n \in \mathbb{N}$.
As in Theorem 4.4, we derive from (4.13) and Theorem 3.5

$$
\begin{equation*}
\sup _{1 \leqslant k, l<x}\left(\log \left(1+\frac{n}{k+l-1}\right)\right)^{-1: 2}(k+l-1)^{1: 2} c_{k, l}(T) \leqslant C\|T\| \tag{4.14}
\end{equation*}
$$

for $T \in L\left(\ell_{1}^{n}, \ell_{2}\right)$.
If we take the volume ratio inequality

$$
\left[\frac{\operatorname{vol}_{m}(A)}{\operatorname{vol}_{m}\left(U_{\ell \frac{n}{2}}\right)}\right]^{1 / m} \leqslant \inf _{1 \leqslant k<x} k^{1 / m} \varepsilon_{k}(A)
$$

into consideration and denote the absolutely convex hull of the points $x_{1}, \ldots, x_{n} \in \ell_{2}^{n}$, i.e., the set

$$
\left\{\sum_{i=1}^{n} \lambda_{i} x_{i}: \sum_{i=1}^{n}\left|\lambda_{i}\right| \leqslant 1\right\}
$$

by $\operatorname{aconv}\left(x_{1}, \ldots, x_{n}\right)$, then we can derive the following corollary from (4.14).

Corollary 4.2. Let $x_{1}, \ldots, x_{n} \in f_{2}^{n}$ be given, such that $B=$ $\operatorname{aconv}\left(x_{1}, \ldots, x_{n}\right)$ has a non-empty interior. For each $m, 1 \leqslant m<n$, there exists an m-dimensional subspace $M \subset \ell_{2}^{n}$ with

$$
\begin{aligned}
{\left[\frac{\operatorname{vol}_{m}(M \cap B)}{\operatorname{vol}_{m}\left(U_{八_{2}^{m}}\right)}\right]^{1: m} \leqslant } & C \cdot\left(\log \left(1+\frac{n}{n-m+1}\right)\right)^{+1 \cdot 2} \\
& \times(n-m+1)^{1: 2} \max _{1 \leqslant i \leqslant n} \mid x_{i} \|_{2}
\end{aligned}
$$

where C is a universal constant.

References

[C] B. Carl, Entropy numbers, s-numbers, and eigenvalue problems, J. Funct. Anal. 41 (1981), 290-306.
[CP] B. Carl and A. Pajor, Gelfand numbers of operators with values in a Hilbert space, Invent. Math. 94 (1988), 479-504.
[CM] B. Carl and E. Makal, Jr., New covering numbers and spectral properties of operators in Banach spaces, Preprint No. 39, Math. Inst. Hungarian Acad. Sciences, 1988.
[CS] B. Carl and I. Staphani, "Entropy, Compactness and the Approximation of Operators." Cambridge Univ. Press, London/New York, 1990.
[G] Y. Gordon, On Milman's inequality and random subspaces which escape through a mesh in \mathbb{R}^{n}, in "GAFA Israel Funct. Analysis Seminar (1986/1987)," Springer Lecture Notes 1317, pp. 84-106, Springer-Verlag, Berlin/New York, 1988.
[GKS] Y. Gordon, H. König, and C. Schëtt, Geometric and probabilistic estimates for entropy and approximation numbers of operators, J. Approx. Theory 49 (1987), 219-239.
[M1] V. Milman, Random subspaces of proportional dimension of finite dimensional normed spaces, approach through the isoperimetric inequality, in "Séminaire d'Analyse Fonction (1984/1985)," Université Paris VI, Paris.
[M2] V. Milman, Volume approach and iteration procedures in local theory of normed spaces, in "Proceedings, Missouri Conf. 1984," Springer Lecture Notes 1166, pp. 99-105, Springer-Verlag, Berlin/New York, 1985.
[PaT] A. Pajor and N. Tomczak-Jaegermann, Subspaces of small co-dimension of finite dimensional Banach spaces, Proc. Amer. Math. Soc. 97 (1986), 637-642.
[P1] G. Pisier, A new approach to several results of V. Milman, J. Reine Angew. Math. 393 (1989), 115-131.
[P2] G. Pisier, "Volume Inequalities in the Geometry of Banach Spaces," Cambridge Univ. Press, London/New York, 1989.
[Pi] A. Pietsch, "Operator Ideals," AdW, Berlin, 1978.
[Su] V. N. Sudakov, Gaussian processes and measures of solid angles in Hilbert space, Soviet Math. Dokl. 12 (1971), 412415.

